Scaling and complex avalanche dynamics in the Abelian sandpile model

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling fields in the two-dimensional Abelian sandpile model.

We consider the unoriented two-dimensional Abelian sandpile model from a perspective based on two-dimensional (conformal) field theory. We compute lattice correlation functions for various cluster variables (at and off criticality), from which we infer the field-theoretic description in the scaling limit. We find perfect agreement with the predictions of a c=-2 conformal field theory and its ma...

متن کامل

Avalanche exponents and corrections to scaling for a stochastic sandpile.

We study distributions of dissipative and nondissipative avalanches in Manna's stochastic sandpile, in one and two dimensions. Our results lead to the following conclusions: (1) avalanche distributions, in general, do not follow simple power laws, but rather have the form P(s) approximately s(-tau(s))(ln s)(gamma)f(s/s(c)), with f a cutoff function; (2) the exponents for sizes of dissipative av...

متن کامل

Sandpile avalanche dynamics on scale-free networks

Avalanche dynamics is an indispensable feature of complex systems. Here, we study the self-organized critical dynamics of avalanches on scale-free networks with degree exponent through the Bak–Tang–Wiesenfeld (BTW) sandpile model. The threshold height of a node i is set as k1− i with 06 ¡ 1, where ki is the degree of node i. Using the branching process approach, we obtain the avalanche size and...

متن کامل

Avalanche structure in a running sandpile model.

The probability distribution function of the avalanche size in the sandpile model does not verify strict self-similarity under changes of the sandpile size. Here we show the existence of avalanches with different space-time structure, and each type of avalanche has a different scaling with the sandpile size. This is the main cause of the lack of self-similarity of the probability distribution f...

متن کامل

Inverse avalanches in the Abelian sandpile model.

We define and study the inverse of particle addition process in the Abelian sandpile model. We show how to obtain the unique recurrent configuration corresponding to a single particle deletion by a sequence of operations called inverse avalanches. We study the probability distribution of sl, the number of "untopplings" in the first inverse avalanche. For a square lattice, we determine Prob(sl )...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The European Physical Journal B

سال: 2010

ISSN: 1434-6028,1434-6036

DOI: 10.1140/epjb/e2010-00164-8